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1 Distance Mod 5

Problem Idea: Anton Trygub
Problem Preparation: Benson Lin
Analysis By: Anton Trygub

Let’s try to understand which edges could be present in the graph.

1. First condition is trivial: for an edge (u, v) to be present in a graph, we need Bu,v = 1;

2. Second condition is a bit less trivial: for any edge (u, v), and for any node w, we
must have |Au,w −Av,w| ≤ 1. So, the value |Bu,w −Bv,w| has to be in {4, 0, 1} for all
w.

It turns out that these conditions are sufficient to determine all edges (assuming there
is a solution). Indeed, assume that these conditions hold for some u, v. Assume that
Au,v = k ≥ 6 with k = 1 mod 5. Then consider the shortest path from u to v in this
graph: x0 = u, x1, . . . , xk = v. Then Au,x2 = 2 and Ax2,v = k − 2, so Bu,x2 = 2, Bx2,v = 4,
violating the second assumption.

So, the algorithm is simple:

1. Check all O(n2) pairs of vertices in O(n) time; add those which satisfy the conditions
to the graph G1;

2. Find all pairs shortest distances in G1; check if they match values Bu,v. If they do,
output G1, else there is no solution.

Note: this idea works for any modulo ≥ 5 (but doesn’t for 3 or 4).
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2 Two Tokens

Problem Idea: Sam Zhang
Problem Preparation: Arul Kolla
Analysis By: Sam Zhang

Let V and E be the vertex and edge sets of the graph. The key idea is the following:

Claim 2.1. Let S ⊆ V such that 1, 2 ∈ S. Then S is exactly the set of vertices that can
be painted, if and only if both of the following holds:

(a) The subgraph induced by S is artistic; and

(b) For all v ∈ V \S, either v is connected to all vertices in S, or v is connected to none
of them.

Proof. Necessity of (a): No token can leave the subgraph induced by S if S is the set of
vertices reachable by a token. Then the requirement that all vertices in S can be painted
corresponds precisely to the induced subgraph being artistic.

Necessity of (b): Consider some v ∈ V \ S. If v is adjacent to exactly one of vertices 1
and 2, then we can move a token to v on the first move, contradicting v ̸∈ S, so assume
v is adjacent to either none of or both of 1 and 2. Suppose for contradiction that (b) is
false; then there exists u ∈ S such that exactly one of vertex u and vertex 1 is adjacent to
v. Since u ∈ S we can consider a sequence of moves that eventually move a token to u. As
we go through the sequence, at some point, the number of tokens that are adjacent to v
must change. This number starts at either 0 or 2 and changes by at most 1 on each move,
so after some number of moves, exactly one token is adjacent to v. This lets us move a
token to v, contradiction. (Thanks to Richard Qi for finding this proof idea!)

Sufficiency of (a) and (b): Since the induced subgraph of S is artistic, we can paint
all vertices in S. However, we cannot paint anything outside of S because moving a token
outside S will necessarily cause it to become adjacent to the other token.

Let f(N) be the number of artistic graphs on N vertices. We will compute f(N) using
f(2), . . . , f(N−1). We start with 2N(N−1)/2 graphs on N vertices, and, for each 2 ≤ i < N ,
we subtract out graphs with i = |S| reachable vertices, which can be counted using the
claim. The formula is

f(N) = 2N(N−1)/2 −
N−1∑
i=2

(
N − 2

i− 2

)
f(i)2N−i2(N−i)(N−i−1)/2,

since there are
(
N−2
i−2

)
f(i) ways to choose S and the artistic induced subgraph, 2N−i ways

to choose whether each v ∈ V \ S is adjacent to S, and 2(N−i)(N−i−1)/2 ways to connect
vertices in V \ S.
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3 Cycling Competition

Problem Idea: Danny Mittal
Problem Preparation: Danny Mittal
Analysis By: Danny Mittal

Let’s first try to understand the properties of a cycling competition better. A given cyclist
will be eliminated once they are adjacent to cyclists of higher skills on both the left and
right.

So let our cyclist be x, let l be the closest cyclist to the left of x with a higher skill, and let
r be the closest cyclist to the right of x with a higher skill. x will be eliminated once they
are adjacent to l and r – i.e. once all the cyclists between l and x have been eliminated
and the cyclists between x and r have been eliminated. (l, r can’t have been eliminated
earlier because until that happens, they are each adjacent to either x themselves or one of
the cyclists in between, which have even lower skills than x).

Therefore, the elimination time of x is 1 more than the maximum elimination time of any
cyclist between l, r other than x itself, i.e. 1 more than the maximum elimination time of
any cyclist with less skill than x such that there is no cyclist with higher skill than x in
between.

This leads to the following observation: if we have two cyclists x, y such that no cyclist in
between x and y has higher skill than both of them, then the one of x, y who is eliminated
later has higher skill.

This observation is enough to allow us to solve the problem. The problem itself is to
determine the skills of the cyclists, i.e. to sort them by skill. This suggests using a
standard (efficient) sorting algorithm. Furthermore, because we want to sort in an exact
number of steps, we want to avoid randomized sorts such as quicksort – the most obvious
choice remaining is then mergesort, which is very easy to analyze.

Mergesort can be described as follows: we have divided the entire input list of length n
into ”runs”, i.e. groups of elements which we have already sorted. Initially, each element
is its own run. In each step, we pair up all of the current runs, and merge each pair of
runs into a single run by determining the relative order of their elements, which for normal
sorting can be done in time linear in the length of the runs. The number of runs is then
divided by 2, so we use ⌈log2 n⌉ steps.

The only actual work done by mergesort is the merging, so we want to be able to merge, i.e.
determine the relative order of elements in two runs using cycling competitions. Let these
runs be r, s, so that r, s are lists of cyclists sorted from lowest skill to highest skill. Now
let r′ be r in reverse order, and imagine doing a cycling competition on t = r′ + s.

Specifically, consider some cyclist x ∈ r and some cyclist y ∈ s. In t, in between x and y,
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we first have all of the cyclists in r with lower skills than x, and then the cyclists in s with
lower skills than y. This means that there are no cyclists in between x, y with higher skills
than both, and so the elimination times will tell us which of x, y has higher skill.

Therefore, running a single cycling competition on t gives us complete information about
the relative skills of cyclists in t. Note that the cycling competition does not have to only
contain t – the observation applies as long as t appears in the cyclist list. This means that
using only one cycling competition, we can merge all of our pairs of runs, completing one
step of mergesort.

We can therefore sort the cyclists by skill using ⌈log2 n⌉ cycling competitions. This is not
quite the optimal number of competitions – we can slightly optimize by noticing that we
already know the cyclist with most skill from the first query, and so don’t need to involve it
in the remaining sorting. Thus, if we make an arbitrary first query, extract the cyclist with
most skill, then organize the remaining cyclists into runs of length 2, we are essentially
applying the same algorithm to n − 1 cyclists, meaning that we use ⌈log2(n − 1)⌉ cycling
competitions.

Specifically, when n is of the form 2k + 1, we save a cycling competition.

Proof of optimality An adversary can act as follows to force ⌈log2(n− 1)⌉ cycling com-
petitions.

On the first cycling competition, pick an arbitrary cyclist w to be the one with the highest
skill, then divide the remaining cyclists into those with high skill and those with low skill.
Specifically, the cyclist after w will have low skill, the one after that will have high skill,
the one after that will have low skill, and so on, alternating. The actual skills can be
assigned arbitrarily, ensuring that the low skills are 1, . . . , ⌈n−1

2 ⌉ and the high skills are
⌈n−1

2 ⌉, . . . , n− 1.

By doing this, all the cyclists with low skill will be eliminated in the first round, and so
the solver will have no information about their relative skills. Specifically, there are n− 1
cyclists other than w, and half (rounding up) will have low skill, so the solver will have no
information about the relative order of those ⌈n−1

2 ⌉ cyclists.

In future competitions, we ignore the cyclists which already have high skill, so we are
dealing only with the cyclists about whom the solver has no information relative to each
other. We then apply the same procedure: starting after w, the first cycling we care about
gets low skill, then high skill, etc. The solver will now still have no relative information
about the lower half of these cyclists.

Thus, in each competition, this set of cyclists about which the solver has no relative
information is divided by half (rounding up); the solver only knows the true skills once this
set is of size at most 1, so since we start from n − 1 cyclists (as we count out w from the
start), the solver needs at least ⌈log2(n− 1)⌉ cycling competitions.
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4 Cycle Constrained Graph

Problem Idea: Sam Zhang
Problem Preparation: Claire Zhang and Richard Qi
Analysis By: Sam Zhang

Here, a walk is a cycle that may repeat vertices or edges.

Given a graph G with NP vertices, we may assume that cyclically permuting vertices
1, 2, . . . , P does not change G; intuitively this should be relatively clear since if cyclic
permutations generated different graphs, they will cancel themselves out modulo P after
considering P permutations. Similarly we may simultaneously assume that cyclically per-
muting vertices P +1, . . . , 2P does not change G, and the same is true for each block of P
vertices, up to (N − 1)P + 1, . . . , NP .

Here is how the above claim can be proven formally. Consider the group of order PN ,
isomorphic to (Z/PZ)N , formed by all possible compositions of cyclic permutations of
each block of P vertices. The group acts on the set S of simple graphs on NP vertices
with no simple cycle of length P . Each orbit of this action has size that is a power of P
(since it must divide PN , the order of the group, by the orbit-stabilizer theorem). Since we
want to compute |S| modulo P , it suffices to count orbits of size 1. But these are precisely
the graphs that are fixed by all cyclic permutations of each block of P vertices.

After making this assumption, we cannot have any edges internal to any of the N blocks,
since cyclic permutations of the block will cause that edge to induce a cycle of length P .
Moreover, for any two blocks, either every pair of vertices from the two blocks are adjacent,
or no pairs are. This lets us define a graph G′, with N vertices (each representing a block of
P vertices in G), such that two vertices in G′ are adjacent if the two corresponding blocks
in G are. A simple cycle of length P in G becomes a walk of length P in G′, which must
give rise to a simple odd cycle in G′ of length at most P . Conversely, if there is a simple
odd cycle in G′ of length at most P , then by inserting extra vertices, we can produce a
simple cycle of length P in G. We have now reduced the problem to counting graphs G′

with no simple odd cycles of length at most P , or equivalently, graphs G′ with no walks of
length P .

Now let f(N,P ) be the number of graphs G′ with N vertices and the given P .

Claim 4.1. If N ≥ P , then f(N,P ) ≡ f(N − P + 1, P ) (mod P ).

Proof. By a similar argument as we used before, we may assume that cyclically permuting
the first P vertices of G′ does not change it. Then, again there are no edges internal to the
first P vertices, and the P vertices must all have the same neighborhood. For the purposes
of determining whether a walk of length P exists, these P vertices can all be combined, so
we get N − P + 1 vertices afterwards.
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Using the claim, we may assume N < P . The problem now reduces to counting the number
of simple bipartite graphs on N vertices, since a walk of length P exists if and only if an
odd cycle exists. This is a fairly standard problem: see https://codeforces.com/blog/

entry/77468 for an example of how to solve it.
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5 Avoid XOR Zero

Problem Idea: Anton Trygub
Problem Preparation: Anton Trygub
Analysis By: Anton Trygub

Let’s analyze when a particular array A1, A2, . . . , AN is unavoidable.

1. If Ai = 0 for some i, we can ignore it. Let’s assume that all Ai are nonnegative.

2. Let’s denote by tr(x) the number of trailing ones of x (so that x in binary ends with
tr(x) ones). Let’s consider some bit b ≥ 0 and some number x. We will analyze how
many numbers among (y, z) can have bit b set, over y + z = x.

(a) If tr(x) ≥ b + 1, then exactly one of y, z will have bit b set: x ends in b + 1
ones, so these ones will be distributed between y and z.

(b) If tr(x) ≤ b, we can always find y, z ≥ with y+ z = x, which don’t contain bit

b. Indeed: consider y1 =
(x−(2tr(x)−1))

2 , z1 = y1+(2tr(x)−1). Then y1, z1 disagree
only in last tr(x) bits and agree on all previous bits. If y1, z1 both contain bit
b, then numbers (y1 + 2b, z1 − 2b) both won’t contain bit b.

(c) If tr(x) ≤ b, and x ≥ 2b+1, we can always find y, z ≥ with y + z = x, which
contain bit b. Indeed: choose y1, z1 as above; if both don’t contain bit b, and
z1 ≥ y1, then numbers (y1 +2b, z1 − 2b) are both nonnegative and contain bit b.

3. Let m = max1≤i≤n tr(Ai). Let’s show that if there exists a number ≥ 2m+1, then
the array is avoidable. Indeed: for each Ai we can split it into Bi + Ci = Ai so that
Bi, Ci don’t contain bit m, and for some Ai we can split it into Bi+Ci = Ai, so that
Bi, Ci both contain bit m. Then no matter which Xi ∈ {Bi, Ci}s we choose, their
XOR will always contain bit m.

4. So, all numbers are ≤ 2m+1 − 1. Since tr(Ai) ≤ m∀i, all numbers are ≤ 2m+1 − 2.
Then the number with tr(Ai) = m has to be equal to 2m − 1.

5. Let’s denote the i-th bit of x as xi. Let’s denote parity(x, (b1, b2, . . . , bt)) as xb1 ⊕
xb2 ⊕ . . . xbt .

Lemma 5.1. For some 1 ≤ k ≤ m− 1, assume that one of the following conditions
holds:

(a) tr(x) ̸= k, tr(x) ≤ m

(b) tr(x) = k, but 2m ≤ x < 2m+1

Then exist nonnegative y+z = x with parity(y, (k−1, k,m)) = parity(z, (k−1, k,m)).
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Proof. First, split x into x = y1 + z1, where y1 =
(x−(2tr(x)−1))

2 , z1 = y1 + (2tr(x) − 1).
y1, z1 differ only in last tr(x) bits. So, if tr(x) ̸= k, tr(x) ≤ m, y1 and z1 won’t differ
in bit m, and will differ either in both or in none of bits k − 1, k. This proves a).

If tr(x) = k and 2m ≤ x < 2m+1, then parity(x, (k − 1, k,m)) = 0, so we can split x
into (x, 0), proving b).

6. Assume that there exists 1 ≤ k < m, such that there is no Ai with ai < 2m and
tr(Ai) = k. Let’s show that the array is avoidable.

For every Ai ̸= 2m − 1, we can split it into Ai = Bi + Ci so that parity(Bi, (k −
1, k,m)) = parity(Ci, (k − 1, k,m)). So, no matter what xi we choose, for their xor
X the value parity(X, (k− 1, k,m)) is fixed. Now, just split 2m − 1 so that this final
parity(X, (k − 1, k,m)) is odd: into (2m − 1, 0) if we don’t want to flip parity of X,
and into (2m − 1− 2k, 2k) if we do.

7. Now assume that for all 1 ≤ k < m there exists Ai with tr(Ai) = k and Ai ≤ 2m−1.
Then the array is unavoidable.

If tr(Ai) = k, then for any nonnegative Bi, Ci with Bi + Ci = Ai, Bi ⊕ Ci ends with
0 11 . . . 1︸ ︷︷ ︸

k ones

.

Lemma 5.2. Assume m numbers x1, x2, . . . , xm ≤ 2m − 1, are such that xi binary
ends with 0 11 . . . 1︸ ︷︷ ︸

i ones

. These m numbers form a XOR basis (so we can represent any

number ≤ 2m − 1 as XOR of some of them).

Proof. Note that xm = 2m − 1, xm−1 = 2m−1 − 1, so we can get m− 1-st bit as their
combination.

If 2t is in their combination for each t = k, k+1, . . . ,m− 1 for some k, then consider
xk+1 ⊕ xk: its smallest nonzero bit is k − 1, so 2k−1 is also represented as XOR of
som xis. So, we can show that it’s true for all k by induction.

So, no matter what Bi, Ci are chosen:

• If Ai ≥ 2m, choose Xi < 2m

• Otherwise, start with Xi = Bi. Note that we have an option to XOR the final
XOR by Bi ⊕ Ci.

• By our lemma, we can XOR this XOR by any number ≤ 2m − 1, and therefore
can make it 0.

Now, we can formulate the final condition for an array to be unavoidable:
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Claim 5.3. Array (A1, A2, . . . , AN ) is unavoidable if and only if all its elements are 0, or
there exists some m ≥ 1, such that:

• 0 ≤ Ai ≤ 2m+1 − 2 for all i

• For every 1 ≤ k ≤ m, there exists Ai with Ai < 2m and tr(Ai) = k

With this in mind, counting the number of unavoidable arrays is easy. Fix m, then all
numbers have to be ≤ 2m+1 − 1, and for each 1 ≤ k ≤ m, we have to select at least one
number with Ai < 2m and tr(Ai) = k. We can denote the number of such numbers by tk,
and do a standard dynamic programming dp[len][k]: how many arrays of length len are
there, where all numbers are < 2m, and for each 1 ≤ k1 ≤ k there exists a number x with
tr(x) = k1. Transition is just: dp[len][k] =

∑
0≤len1<len dp[len1][k−1]·

(
len
len1

)
·tlen−len1
k .

For a fixed m, we can calculate this in O(n2k), which gives us the final runtime of
O(n2k2).


